Electronic-structure calculations at macroscopic scales

M. Ortiz
California Institute of Technology

In collaboration with: K. Bhattacharya (Caltech), V. Gavini (UMich), J. Knap (LLNL)

COMPLAS-IX
Barcelona, September 6, 2007
Metal plasticity – Multiscale modeling

Foundational theory: Quantum mechanics of electron systems

Lattice defects, EoS

Dislocation dynamics

Subgrain structures

Polycrystals

Validation tests (SCS)
Predicting Properties of Matter from Electronic Structure

- The quantum mechanics of electrons and ions lies at the foundation of a large part of low-energy physics, chemistry and biology
- The Born-Oppenheimer approximation: Decouples the electronic and nuclear motion, electrons respond instantaneously to any change in nuclear coordinates
- Time-independent Schrödinger equation for an isolated N-electron atomic or molecular system:

\[
\hat{H} \psi = E \psi
\]

\[
\hat{H} = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 \right) + \sum_{i=1}^{N} \nu(r_i) + \sum_{i<j}^{N} \frac{1}{r_{ij}}
\]
Quantum mechanics and material properties

Quantum Mechanics of Many-Electron Systems.

By P. A. M. Dirac, St. John’s College, Cambridge.

(Communicated by R. H. Fowler, F.R.S.—Received March 12, 1929.)

§ 1. Introduction.

The general theory of quantum mechanics is now almost complete, the imperfections that still remain being in connection with the exact fitting in of the theory with relativity ideas. These give rise to difficulties only when high-speed particles are involved, and are therefore of no importance in the consideration of atomic and molecular structure and ordinary chemical reactions, in which it is, indeed, usually sufficiently accurate if one neglects relativity variation of mass with velocity and assumes only Coulomb forces between the various electrons and atomic nuclei. The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.
Defective crystals – Supercells

Defective crystals – The chasm

• Because of computational cost, supercells limited to small sizes → Exceedingly large defect concentrations
• Often the objective is to predict bulk properties of defects:
 – Vacancies: cell size ~ 100 nm
 – Dislocation cores: cell size ~ 100 nm
 – Domain walls: cell size ~ 1 μm
 – Grain boundaries: cell size ~ 20 μm
• Small-cell calculations lead to discrepancies with experimental measurements!
• *How can bulk properties of defects (> million atom computational cells) be predicted from electronic structure calculations?*
Density functional theory

- Theorem [Hohenberg-Kohn, 1964] The external potential $\nu(r)$ is determined by the electron density

$$\rho(r) = N \int |\psi|^2 ds_1 dx_1 \ldots x_N$$

- Corollary: $E[\rho] = T[\rho] + V_{ne}[\rho] + V_{ee}[\rho]$

- Theorem [Hohenberg-Kohn, 1964] $E_0 = \inf_\rho E[\rho]$

- Orbital-free DFT (OFDFT):

$$E[\rho] = \int \epsilon_{loc}(r, \rho, \nabla \rho) \, dr + \frac{1}{2} \int_\Omega \int_\Omega \frac{\rho(r) \rho(r')}{|r - r'|} \, dr \, dr'$$

$$T_s[\rho] + E_{xc}[\rho] + V_{ne}[\rho] \quad \text{classical } V_{ee}[\rho]$$
OFDFT – Real space formulation

- Total energy functional:

\[
E[\rho] = \int \epsilon_{loc}(r, \rho, \nabla \rho) \, dr + \frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{\rho(r)\rho(r')}{|r - r'|} \, dr \, dr'
\]

finely oscillatory! nonlocal!

- Local Lagrangian form:

\[
E[\rho] = \sup_{\phi \in H^1(\mathbb{R}^3)} L[\rho, \phi]
\]

\[
L[\rho, \phi] = \int \epsilon_{loc}(r, \rho, \nabla \rho) \, dr
\]

\[-\frac{1}{8\pi} \int_{\Omega} |\nabla \phi(r)|^2 \, dr + \int_{\Omega} (\rho(r) + b(r))\phi(r) \, dr
\]
pseudopotentials
OFDFT – Real space formulation

- Enforce constraint $\rho > 0$ by setting $\rho = u^2$.
- Saddle-point problem:

$$\inf_{u \in H^1(\Omega)} \sup_{\phi \in H^1(\mathbb{R}^3)} L(u, \phi)$$

subject to: $\int_{\Omega} u^2(r) \, dr = N$

Theorem [BGKO] Let $E[u]$ be the TF-λ W + LDA energy functional, $X = \{ u \in H^1(\Omega), \|u\|_{L^2(\Omega)}^2 = N \}$. Then $E[u]$ has a minimum in X.
OFDFT – FE approximation

- Let $X_h \times Y_h$ be a sequence of finite-element subspaces of $H^1_0(\Omega) \times H^1(\mathbb{R}^3)$.

- Discrete problem: $F[u, \phi] \equiv$

$$-\frac{1}{8\pi} \int_\Omega |\nabla \phi(r)|^2 \, dr + \int_\Omega (u^2(r) + b(r)) \phi(r) \, dr$$

$$F_h[u, \phi] = \begin{cases} F[u, \phi], & \text{if } \phi \in Y_h \\ -\infty, & \text{otherwise.} \end{cases}$$

$$E_h[u] = \begin{cases} E_{loc}[u] + \sup_\phi F_h[u, \phi], & \text{if } u \in X_h \\ +\infty, & \text{otherwise.} \end{cases}$$

Theorem [BGKO] $\Gamma-\lim_{h \to 0} E_h = E$, $\inf E_h \to E_0$.

Michael Ortiz
COMPLAS-IX 09/07
Convergence test – Hydrogen atom

Energy of hydrogen atom as a function of number of subdivisions of initial mesh

Energy of hydrogen atom as a function of number of subdivisions of initial mesh
Example – Aluminum nanoclusters

Contours of electron density in 5x5x5 aluminum cluster (mid plane)

Michael Ortiz
COMPLAS-IX 09/07
Example – Aluminum nanoclusters

<table>
<thead>
<tr>
<th>Property</th>
<th>DFT-FE</th>
<th>KS-LDA(^a)</th>
<th>Experiments(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice parameter (a.u.)</td>
<td>7.42</td>
<td>7.48</td>
<td>7.67</td>
</tr>
<tr>
<td>Cohesive energy (eV)</td>
<td>3.69</td>
<td>3.67</td>
<td>3.4</td>
</tr>
<tr>
<td>Bulk modulus (Gpa)</td>
<td>83.1</td>
<td>79.0</td>
<td>74.0</td>
</tr>
</tbody>
</table>

\(^a\) Goodwin et al. (1990), Gaudion et al. (2002)
\(^b\) Brewer (1997), Gschneider (1964)

\[\epsilon_n \approx \epsilon_{coh} + n^{-1/3} \epsilon_{surf} \]
\[B_n \approx B_0 + n^{-1/3} B_{surf} \]
OFDFT – Coarse-graining

• Real-space formulation and finite-element approximation → Nonperiodic, unstructured, OFDFT calculations
• However, calculations are still expensive: 9x9x9 cluster = 3730 atoms required 10,000 CPU hours!
• Isolated defects: All-atom calculations are unduly wasteful, electronic structure away from the defects is nearly identical to that of a uniformly deformed lattice
• Objective: Model reduction away from defects
• General approach (QC-OFDFT):
 – Derive a real space, nonperiodic, formulation of OFDFT √
 – Effect a quasi-continuum¹ (QC) model reduction

• **Challenge**: Subatomic oscillations and lattice scale modulations of electron density and electrostatic potential

QC/OFDFT – Multigrid hierarchy

- Nuclear positions:
 \[\mathbf{R} \in \mathbb{R}^{3M} = \mathcal{Z} \]

- Equilibrium problem:
 \[\inf_{\mathbf{R} \in \mathcal{Z}} E_0[\mathbf{R}], \]
 \[E_0[\mathbf{R}] = \inf_u \sup_\phi E[u, \phi] \]

- Reduced problem:
 \[\begin{cases}
 \inf_{\mathbf{R} \in Z_h} E_0[\mathbf{R}] \\
 Z_h = \mathbb{R}^{3M_h}, M_h \ll M
 \end{cases} \]
QC/OFDFT – Multigrid hierarchy

- Predictor/corrector\(^1\):
 \[
 \rho_h = \rho_h^0 + \rho_h^c \\
 \phi_h = \phi_h^0 + \phi_h^c
 \]
 predictor \hspace{1cm} corrector

- Predictor: Local Cauchy-Born field (LQC/OFDFT)\(^2\)
defined everywhere

- Corrector: Interpolated on intermediate grid

\(^1\)Blanc, LeBris, Lions, *ARMA*, **164** (2002) 341
QC/OFDFT – Multigrid hierarchy

- Element quadrature:
 \[\int_{e} f(r) \, dr \approx |e| \langle f \rangle_{D_e} \]

- Quadrature domain:
 \[D_e = \min \left\{ \text{atomic cell element } e \right\} \]

- \[\langle f \rangle_{D_e} \] evaluated using a fine grid over \(D_e \)
QC/OFDFT – Attributes

• The overall complexity of the method is set by the size of the intermediate mesh (interpolation of ρ_h, φ_h)
• All approximations are numerical: interpolation of fields, numerical quadrature
• No spurious physics is introduced: OFDFT is the sole input to the model
• A converged solution obtained by this scheme is a solution of OFDFT
• Coarse graining is seamless, unstructured, adaptive: no periodicity, no interfaces
• Fully-resolved OFDFT and continuum finite elasticity are obtained as extreme limits
• Million-atom OFDFT calculations possible at no significant loss of accuracy
QC/OFDFT convergence – Al vacancy

Convergence of QC reduction

4% of nuclei accounted for in calculation at no loss of accuracy!
QC/OFDFT convergence – Al vacancy

Convergence with material sample size

$E_f = 0.66 \text{ eV}$
Triftshauser, Phys Rev, B12 (1975) 4634

1,000,000 atoms required to approach bulk conditions!
QC/OFDFT convergence – Al vacancy

- QC reduction converges rapidly:
 - 16,384-atom sample: ~200 representative atoms required for ostensibly converged vacancy formation energy.
 - 1,000,000-atom sample: ~1,017 representative atoms and ~450,000 electron-density nodes give vacancy formation energy within ~0.01 eV of converged value.

- Vacancies have long-range elastic field and convergence with respect to sample size is slow: ~1,000,000 atom sample required to attain single-vacancy formation energy!

- What can we learn from large cell sizes?
 - Case study 1: Di-vacancies in aluminum
 - Case study 2: Prismatic loops in aluminum
Case study 1 – Di-vacancies in Al

Di-vacancy along <100>
Di-vacancy along <110>

Core electronic structure
Case study 1 – Di-vacancies in Al

Binding energy vs. material sample size
Case study 1 – Di-vacancies in Al

- Calculations evince a strong cell-size effect: binding energy changes from repulsive at large concentrations to attractive at bulk concentrations.
- Sample sizes containing > 1,000,000 atoms must be used in order to approach bulk conditions.
- Di-vacancy binding energies are computed to be:
 - $-0.19 \text{ eV for } <110> \text{ di-vacancy}$;
 - $-0.23 \text{ eV for } <100> \text{ di-vacancy}$
- Agreement with experimental values: -0.2 to -0.3 eV (Ehrhart et al., 1991; Hehenkamp, 1994).
- Small-cell size values consistent with previous DFT calculations (Carling et al., 2000; Uesugi et al., 2003):
 - $+0.05 \text{ eV for } <110> \text{ di-vacancy}$;
 - $-0.04 \text{ eV for } <100> \text{ di-vacancy}$
- No discrepancy between theory and experiment, only strong vacancy-concentration effect!
Case study 2 – Prismatic loops in Al

Prismatic dislocation loops formed by condensation of vacancies in quenched aluminum

Prismatic dislocation loops formed by condensation of vacancies in quenched Al-05%Mg

- Prismatic dislocation loops also in irradiated materials
- Loops smaller than 50 nm undetectable: Nucleation mechanism? Vacancy condensation?
Case study 2 – Prismatic loops in Al

Quad-vacancy binding energy vs. material sample size

Vacancy binding energy (eV)

Cell Size (number of atoms)

stable

unstable

(100) plane

Michael Ortiz
COMPLAS-IX 09/07
Case study 2 – Prismatic loops in Al

Non-collapsed configuration
Binding energy = -0.88 eV

1/2<110> prismatic loop
Binding energy = -1.57 eV

Stability of hepta-vacancy

Michael Ortiz
COMPLAS-IX 09/07
Case study 2 – Prismatic loops in Al

- Growth of planar vacancy clusters is predicted to be energetically favorable for sufficiently small concentrations
- Elucidation of relevant conditions requires large cell-size calculations
- Vacancy clustering and subsequent collapse is a possible mechanism for formation of prismatic dislocation loops
- Prismatic loops as small as those formed from hepta-vacancies are stable!
Concluding remarks

• Predictive multiscale models of materials require:
 – *physics-based multiscale modeling: QM foundational theory*
 – *Approximations that do not compromise the physics and that introduce controllable errors and the possibility of convergence*

• Finite elements provide an ideal basis for real-space non-periodic formulations of OFDFT

• Behavior of material samples may change radically with size (concentration): Small samples may not be representative of bulk behavior

• Need electronic structure calculations at macroscopic scales: Quasi-continuum OFDFT (QC/OFDFT)

• Outlook: Application to general materials requires extension to Kohn-Sham DFT…
Concluding remarks
