Prediction and Multiscale Modeling of Corrosion and Wear

M. Ortiz
California Institute of Technology
In collaboration with E.A. Carter
(Princeton University)

Opening plenary lecture given at the
17th US Army Symposium on Solid Mechanics
Baltimore, MD, April 2-3, 2007
Gun-bore erosion in artillery systems
Gun-bore erosion in artillery systems

Typical 360° magnifying borescope micrograph of LCCr/ 8 rpm/zone six charge-related second-quarter-life land and groove erosion near the bore origin (Sopoka, Rickarda and Dunn, Wear 258:2005, 659–670)
Gun-bore erosion in artillery systems

Typical magnifying borescope micrograph of HC-Cr/1 rph/zone six charge related midlife erosion at the 12:00 bore origin. (Sopoka, Rickarda and Dunn, Wear 258:2005, 659–670)

M. Ortiz
USAS17
Gun-bore erosion in artillery systems

 Typical SEM cross-sectional micrograph of HC-Cr/zone six charge related of land and groove substrate erosion through a micro-crack at the 12:00 bore origin (Sopoka, Rickarda and Dunn, *Wear* **258**:2005, 659–670)

M. Ortiz
USAS17
Gun-bore erosion in artillery systems

Metallographic section of the electroplated Cr-on-steel 120 mm tube following 118 cannon firings (Underwood, Vigilante, Mulligan and Todaro, *ASME Trans.* 128:2006, 168–172)
Gun-bore erosion in artillery systems

Gun-bore erosion in artillery systems

- Gun-bore wear involves the simultaneous operation of three factors:
 - Thermal: heating, thermal gradient, thermal stress cracks, radiation, surface melting.
 - Chemical: reacting flow, gas-wall reactions, corrosion.
 - Mechanical: cracking, ablation, spallation.

- resulting in:
 - Micro and macro-pitting.
 - Condemnation.
The larger picture: Model-based certification

- Ultimate objective: **Certification** of complex systems by a rigorous quantification of design **margins** and performance **uncertainties**
- Performance of complex systems is difficult to quantify based on testing alone
- Model-based certification: Develop physics-based, high-fidelity models enabling rigorous quantification of performance uncertainties with a small number of tests
- System behavior often occurs on multiple length and time scales, requiring multiscale modeling
- Ultimate goal: Knob-free (first-principles) predictive simulation.
Wear – Multiscale modeling

Sopoka et al., Wear, 258, 659 (2005)
Yamaguchi et al., Science, 309, 393 (2005)

Mesoscale:
- plasticity
- diffusion
- fracture

Nanoscale:
- impurity absorption, mobility
- grain-boundary decohesion
- lattice defects, dislocations
- chemical reactions

Macroscale:
- wear rates
- life assessment
- certification

M1 Abrams Main Battle Tank
Model problem – Hydrogen embrittlement

- Possible mechanisms for step 3:
 - *Hydrogen-enhanced decohesion (HED)*
 - *Hydrogen-enhanced localized plasticity (HELP)*
 - *Hydrogen-related phase changes (HRPC)*
HE – Multiscale model

- Continuum diffusion, FE stress analysis
- Continuum plasticity, resolved plastic zone
- Renormalized cohesive law
- First-principles cohesive law

\[X = H_2, H_2S, H^+ \ldots \]

Zoom of the CRACK TIP REGION

length

mm \hspace{1cm} \mu m \hspace{1cm} nm

M. Ortiz
USAS17
Cohesive laws – First principles

\[t = \frac{\partial \phi}{\partial \delta} \]

Cohesive laws – – First principles

M. Ortiz
USAS17
Cohesive laws – First principles

• Ab initio cohesive laws:
 – Peak stress \(\sim\) theoretical strength
 – Critical opening displacement \(\sim\) atomic lattice spacing
 – Critical energy release rate \(\sim\) Relaxed surface energy
 – Cohesive length \(\sim\) atomic lattice spacing
 – Mesh resolution requirement \(\sim\) atomic lattice spacing

• Continuum stresses limited by yield stress, mesh size

• Cannot embed first-principles cohesive laws directly in continuum calculations

• Must upscale (coarse-grain, renormalize) the first-principles cohesive law to continuum scale
Cohesive laws – Upscaling

- Effective (upscaled) cohesive law:
 - N interatomic planes, first-principles cohesive law
 - Rice-Beltz elastic correction
Cohesive law – Upscaling

Ab-initio cohesive law

\[
\phi(\delta)/2\gamma
\]

\[
\phi \sim \frac{C}{2}\delta^2
\]

\[
1 \leq \delta / \delta_c \leq 1
\]

Renormalized cohesive law

\[
\bar{\phi}(\bar{\delta})/2\bar{\gamma}
\]

\[
\bar{\phi} \sim \frac{\bar{C}}{2}\bar{\delta}^2
\]

\[
1 \leq \bar{\delta} / \bar{\delta}_c \leq 1
\]

Universal shape!

\[
\bar{\sigma}_c = \sigma_c / \sqrt{N}, \quad \bar{\delta}_c = \delta_c \sqrt{N}, \quad \bar{C} = C / N
\]

Metal, semiconductor, and ionic ceramic all fall on same universal curve

Cohesive laws – Upscaling

- Continuum cohesive law attains asymptotically a *universal asymptotic form* independent of the form of the atomistic cohesive law
- The renormalized peak stress scales as: σ_c / \sqrt{N}
- The renormalized COD scales as: $\delta_c \sqrt{N}$
- Surface energy is preserved under renormalization
- The only information from the atomistic cohesive law that passes to the continuum is: i) Initial slope; ii) Surface energy
- The renormalized cohesive zone size is automatically resolved by mesh size
HE – Multiscale model

Continuum diffusion, FE stress analysis

Continuum plasticity, resolved plastic zone

Renormalized cohesive law

First-principles cohesive law

$X = H_2, H_2S, H^+ \ldots$

Zoom of the CRACK TIP REGION

length

mm

μm

nm

M. Ortiz
USAS17
Segregation-enhanced decohesion

The Born-Haber cycle

\[2\gamma(\theta) = -\Delta H_s + 2\gamma(0) + E_{ad} \]

<table>
<thead>
<tr>
<th>Θ_H (ML)</th>
<th>$-\Delta H_s$ (J/m²)</th>
<th>$2\gamma(0)$ (J/m²)</th>
<th>E_{ad} (J/m²)</th>
<th>$2\gamma(\theta)$ (J/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4.856</td>
<td>0</td>
<td>4.856</td>
</tr>
<tr>
<td>0.25</td>
<td>-0.427</td>
<td>4.856</td>
<td>-0.748</td>
<td>3.681</td>
</tr>
<tr>
<td>0.50</td>
<td>-0.854</td>
<td>4.856</td>
<td>-1.516</td>
<td>2.486</td>
</tr>
<tr>
<td>1.00</td>
<td>-1.708</td>
<td>4.856</td>
<td>-2.550</td>
<td>0.598</td>
</tr>
</tbody>
</table>
Hydrogen-enhanced decohesion of Fe(110)

\[\gamma(\theta) = \gamma(0)(1 - 1.0467\theta + 0.1687\theta^2) \]

First-principles calculations of coverage dependence of surface energy in Fe(110) (Jarvis, Hayes and Carter, Chem. Phys. Chem., 1, 55, 2001)
Cohesive law – Effect of H coverage

\[\theta = \frac{\Gamma}{\Gamma_s} \]

Coverage vs. cohesive strength

\[\tau(\delta, \theta) = \tau_c(\theta)(1 - \delta/\delta_c) \]
\[\tau_c(\theta) = \tau_c(0)(1 - 1.0467\theta + 0.1687\theta^2) \]

Coverage vs. cohesive law
HE – Hydrogen diffusion

- Diffusion equation: \(C_t = \text{div}(MC \text{grad} \mu) = 0 \)
- Chemical potential: \(\mu = \mu_0(T) + RT \log(C/C_0) - pV \)
- Surface coverage: \(\Gamma = \Gamma^s/[1 + C^{-1} \exp(\Delta g/RT)] \)
 (Langmuir-McLean)
- Boundary conditions:

\[
\begin{align*}
\mu &= \mu_{\text{env}} \\
J_n &= L(\delta)(\mu - \mu_{\text{env}}) \\
J_n &= 0
\end{align*}
\]
Hydrogen absorption paths and energies into Fe(100) and Fe(110)

$E_a = 1.0 \text{ eV}$

$E_a = 0.34 \text{ eV}$
Hydrogen diffusion in strained Fe

\[D(T) = D_0 \exp\left(-\frac{\Delta E + \Delta ZPE}{k_B T}\right) \]

Hops between T-sites:

Volumetric deformation:

\[
F = \begin{bmatrix}
1 + \epsilon & 0 & 0 \\
0 & 1 + \epsilon & 0 \\
0 & 0 & 1 + \epsilon
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>ε (%)</th>
<th>(D_0) (10^{-7} \text{ m}^2/\text{s})</th>
<th>(\Delta E) (eV)</th>
<th>(\Delta E + \Delta ZPE) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>1.872</td>
<td>0.095</td>
<td>0.044</td>
</tr>
<tr>
<td>-1</td>
<td>1.814</td>
<td>0.094</td>
<td>0.046</td>
</tr>
<tr>
<td>0</td>
<td>1.818</td>
<td>0.092</td>
<td>0.044</td>
</tr>
<tr>
<td>1</td>
<td>1.730</td>
<td>0.092</td>
<td>0.048</td>
</tr>
<tr>
<td>2</td>
<td>1.680</td>
<td>0.091</td>
<td>0.050</td>
</tr>
</tbody>
</table>

(Ramasubramaniam and Carter, in progress)

M. Ortiz
USAS17
HE - Case Study

- **Material:** AISI 4340 (Q&T) high-strength steel in seawater
 - $E = 210$ GPa
 - $\nu = 0.3$
 - $\sigma_y = 1000 - 1600$ Mpa
 - $N = 0.042 - 0.087$
 - $K_c = 45 - 150$ MPa m$^{1/2}$
 - $\tau_c = 4000 - 6400$ Mpa
 - $V = 7.116 \times 10^{-6}$ m3/mol

- **Impurity (hydrogen)**
 - $D(T_{amb}) = 1.0 \times 10^{-10}$ m2/s
 - $\Delta V = 2.0 \times 10^{-6}$ m3/mol

- **Load:** Applied P (corresp. K)

- **Environment**
 - $T = 300-450$ K
 - $C_{eq,0} = 0.1-10$ ppm wt $= 5.5 \times (10^{-6} - 10^{-4})$

Center crack panel geometry.

Finite-Element Analysis

- Solution method: staggered procedure,

 - At fixed coverage, solve mechanics problem → update stresses, pressure, deformations
 - At fixed pressure, solve diffusion problem → update concentrations

 - BC Crack flanks:
 - Equilibrium impurity coverage on crack flanks: $C = C_{eq}(p)$
 - At the cohesive zone: $J_n = 0$.

 - BC at external boundaries: $C = 0$.
 - IC: $C = C_{eq}(p)$ on crack flanks; $C = 0$ elsewhere.

HE – Hydrogen concentration

M. Ortiz
USAS17
HE – Hydrogen concentration

M. Ortiz

USAS17
HE – Plastic strain

HE – Plastic strain

HE – Propagation velocity

- Calculated curves reproduce existence of threshold K_{ISCC} and plateau $V_{P,\text{II}}$.
- Trends agree with experiments, considering the large scatter.

HE - Threshold K_{ISCC} vs. σ_y

- Calculated curve reproduces experimental trend.
- For high σ_y calculations approach upper experimental bound.
- Crack morphology changes from transgranular at low σ_y to intergranular at high σ_y.
- At high σ_y, a stronger effect of H on grain boundaries (not accounted for) would improve agreement. Likewise for t_i vs. K_i.

HE - Plateau $V_{P,\parallel}$ vs. σ_y

- Results for several high strength steels in various media included.
- Calculated curve reproduces experimental trend.
- For high σ_y, a stronger effect of H on grain boundaries (not accounted for) would improve agreement in slope.
- For low σ_y there is a paucity of data. (Serebrinsky, Carter and Ortiz, *J. Mech. Phys. Solids*, 52 (2004) 2403)
HE - $V_{P,\|}$ vs. temperature

- Several high strength steels included.
- Calculated curve reproduces increasing (Arrhenius) part.
- Calculated activation energy for $V_{P,\|}$, Q_V, is similar to that taken for D_{eff}, $Q_D \approx 40 \text{kJ/mol}$.
- Fall in $V_{P,\|}$ (generally observed) at high T not reproduced.

Concluding remarks

• Multiscale model (chem + mech) predicts well HE in structural steels at low temperatures (< 100ºC)
• Model does not predict well:
 – High-temperature behavior
 – Aluminum alloys
• Unknown unknowns! HELP? HRPC? Others?
• Model still empirical and incomplete at the mesoscale
• Unmodelled length scales:
 – Interaction between dislocations and H:
 • Solution hardening
 • Pipe diffusion
 – Polycrystalline structure: Grains and grain boundaries
• When is enough enough?

Experimental validation, uncertainty quantification!