Multiscale modeling of materials: (2) Dislocation structures → polycrystals

M. Ortiz
California Institute of Technology

Scuola Normale di Pisa
September 19, 2006
Metal plasticity – Multiscale hierarchy

Ultimate goal: Ascertain macroscopic behavior from first principles

Lattice defects, EoS

Dislocation dynamics

Subgrain structures

Polycrystals

Continuum

Engineering applications

Quantum mechanical

Discrete

Lattice defects, EoS

Dislocation dynamics

Subgrain structures

Polycrystals

Continuum

Engineering applications

Quantum mechanical

Discrete

Lattice defects, EoS

Dislocation dynamics

Subgrain structures

Polycrystals

Continuum

Engineering applications

Quantum mechanical

Discrete

Lattice defects, EoS

Dislocation dynamics

Subgrain structures

Polycrystals

Continuum

Engineering applications

Quantum mechanical

Discrete

Lattice defects, EoS

Dislocation dynamics

Subgrain structures

Polycrystals

Continuum

Engineering applications

Quantum mechanical

Discrete

Polycrystals

Continuum

Engineering applications

Quantum mechanical

Discrete

Polycrystals

Continuum

Engineering applications

Quantum mechanical

Discrete

Polycrystals

Continuum

Engineering applications

Quantum mechanical

Discrete
Continuum models of crystal plasticity

- Aim: 'Cook up' empirical models of crystal plasticity 'inspired' in dislocation mechanics that explain observed behavior (microstructure, macroscopic stress-strain behavior, scaling laws).
- To date: 'Deformation theory of plasticity' (one incremental step from initial to final state), energy minimization, relaxation, \(\Gamma \)-convergence.
- Open question: Which continuum models (energy + kinetics) are limits of discrete (hence more fundamental) models?
- Open question: General deformation paths?
General linear elastic dislocations

- Volterra dislocation: \(u \in SBV \) such that

\[
Du = \nabla u \mathcal{L}^3 + b \otimes m \mathcal{H}^2 \subset S_u \equiv \beta^e \mathcal{L}^3 + \beta^p \mathcal{H}^2 \subset S_u
\]

- Elastic deformation
- Plastic deformation

- Dislocation density: \(\alpha = -\text{curl} \beta^e = \text{curl} \beta^p \)
General dislocations – Energy

- Stored energy:

\[E(\alpha) = \int \int \text{tr}[\alpha^T(x) \Gamma(x, y) \alpha(y)] \, dx \, dy \]

where: \(\Gamma(x, y) = \int [\nabla G(x, z) \cdot \nabla G(y, z) I - \nabla G(x, z) \otimes \nabla G(x, z)] \, dz \)

and: \(G = \Delta^{-1} \equiv \text{Green’s function of the Laplacian.} \)
Straight dislocations – Dissipation

- Peierls stress τ_0: Threshold stress for dislocation motion
- Dissipation $= \tau_0 \times$ (slipped area)
 - Lattice friction
Obstacles – Topological obstructions

- Example: Precipitates.

Impenetrable obstacles

(Humphreys and Hirsch ’70)

- Junctions:

.pinning points

\[b_1 \rightarrow b_2 \]

\[b_1 + b_2 \]
The standard continuum model

\[u = \bar{\beta}x \] (affine BC)

\[\beta^p, \alpha \] given

- Elastic energy: \(\inf_u \int_{\Omega \setminus S_u} \left(\frac{1}{2} |\epsilon(u)|^2 - \epsilon(u) \cdot \epsilon^p \right) \, dx \)

\[= |\Omega| \left(\frac{1}{2} |\bar{\epsilon}|^2 - \bar{\epsilon} \cdot \bar{\epsilon}^p \right) + E(\alpha) \]

\[\beta^p = \frac{1}{|\Omega|} \int_{\Omega} \beta^p \, dx \equiv \text{average plastic deformation} \]
The standard continuum model

- Average plastic deformation:

\[
\bar{\beta}^p = \frac{1}{|\Omega|} \int_{\Omega} \beta^p \, dx
\]

\[
\bar{\beta}^p = \frac{1}{|\Omega|} \int_{S_u} [u] \otimes m dH^2 \equiv \sum_{i=1}^{N} \gamma_i s_i \otimes m_i
\]

where \(\gamma_i \equiv \) slip strain on system \(i \).

\[
\gamma = \frac{3b}{L} = \frac{b3L^2}{L^3} = \frac{b \times \text{Area}}{\text{Volume}}
\]
The standard continuum model

- Standard model: \[E(u, \gamma) = \int_{\Omega} \left(\frac{1}{2} |\varepsilon(u) - \varepsilon^p(\gamma)|^2 + W^p(\gamma) + \frac{T}{b} |\text{curl} \beta^p(\gamma)| \right) \, dx \]

 \(\text{strain energy} \quad \text{plastic work} \quad \text{core energy} \)

- Plastic work (infinite latent hardening):
 \[W^p(\gamma) = \begin{cases}
 \tau_i |\gamma_i| & \text{if } \gamma_j = 0, \quad \forall j \neq i \\
 \infty & \text{otherwise},
 \end{cases} \]

- Core energy: \(T \sim Gb^2 \equiv \text{dislocation line tension} \),
 \(T/b \sim Gb \sim O(\epsilon) \)
Standard model – Local

- Minimize slip strains pointwise:

\[\inf_{\gamma} E(u, \gamma) = I(u) = \int_{\Omega} W(c(u)) \, dx \]

where:

\[W(\epsilon) = \min_{\gamma} \left(\frac{1}{2} |\epsilon - \bar{\epsilon}^{p}(\gamma)|^2 + W^{p}(\gamma) \right) \]

- Properties of \(W(\epsilon) \):
 - Linear growth along orbits of \(s_i \otimes m_i, i = 1, \ldots, N \).
 - Quadratic growth in all other directions.

- Question: Relaxation of \(I(u) \)?
Standard model – Local

- Example: FCC crystal deforming on (1\bar{1}0)-plane

\[\beta^p \in \gamma s \otimes m + so(3) \]
(Single slip)

- \(W(\nabla u) \) non-convex!

\(W(\nabla u) \) non-convex!

(Ortiz and Repetto, *JMPS*, 47(2) 1999, p. 397)
Standard model – Relaxation

- Convex envelop: \(W^{**}(\beta) = \inf \left\{ \sum_i \lambda_i W(\beta_i) : \lambda_i \geq 0, \sum_i \lambda_i = 1, \beta_i \in \mathbb{R}^{3 \times 3} \right\} \).

- Linear growth on traceless symmetric matrices
- Quadratic growth on the trace

- Regression function: \(W^\infty(\beta) = \lim_{t \to \infty} \frac{1}{t} W^{**}(t/\beta) \).

Definition. A set of slip systems \(S = \{ s_i \otimes m_i \} \) is complete if the symmetric lamination convex hull of \(\{ \pm (s_i \otimes m_i)^{\text{sym}} \} \) contains a neighbourhood of the origin in the space of symmetric traceless matrices.
Standard model – Relaxation

- Let: \(U(\Omega) = \left\{ u \in BD(\Omega, \mathbb{R}^3) : \text{div}u \in L^2(\Omega) \right\} \)

Theorem (Conti and Ortiz, ARMA ’05) *Suppose that the set of slip systems is complete. Then, the relaxation of \(I(u) \) with respect to the strong \(L^1 \) topology is*

\[
J(u) = \begin{cases} \\
\int_{\Omega} W^{**}(c(u)) \, dx + \int_{\Omega} W^{\infty} \left(\frac{E_s u}{|E_s u|} \right) \, d|E_s u|, & \text{if } u \in U(\Omega) \\
+\infty, & \text{otherwise.}
\end{cases}
\]
Standard model – Relaxation

- Proof: Match upper & lower bounds, $W^{qc} = W^{**}$.
- Lower bound: $J(u)$ convex functional of measure Eu, $J(u) \leq I(u)$.

Lemma Let S be a complete set of slip systems. For any $\beta \in \mathbb{R}^{3 \times 3}$ and any $\epsilon > 0$ there is a laminate ν (of finite order) such that

$$\langle \nu, \text{Id} \rangle = \beta \quad \text{and} \quad \langle \nu, W \rangle \leq W^{**}(\beta) + \epsilon.$$

- Some of the deformations in the laminate may become unbounded as $\epsilon \to 0$ and become slip lines in the limit.
Standard model – Relaxation

\[J(u) = \int_{\Omega} W^{**}(\varepsilon(u)) dx + \int_{\Omega} W^{\infty} \left(\frac{E_s u}{|E_s u|} \right) d|E_s u| \]

Ideal plasticity

Slip-line energy

(Rice, Mech. Mat., 1987)

(Crone and Shield, JMPS, 2002)
Relaxation and computation

Indentation of [001] surface of FCC crystal
(Hauret and Ortiz, 2005)
Relaxation and computation

rank 2/2, $|γ|_∞ = 0.0025$

rank 4/14, $|γ|_∞ = 0.43$

rank 4/12, $|γ|_∞ = 0.02$

rank 4/6, $|γ|_∞ = 0.026$

rank 4/16, $|γ|_∞ = 0.21$
Relaxation and computation

Indentation of [001] FCC surface

- Elastic
- Unrelaxed
- Relaxed
- Bubble enrichment

(Hauret and Ortiz, 2005)
Relaxation and computation

Microstructures generated at quadrature points on the fly

average deformation

local deformation

average stress

local stress
Model boundary-value problem

- Standard model: \(E(u, \gamma) = \)
 \[
 \int_\Omega \left(\frac{1}{2} |\varepsilon(u) - \bar{\varepsilon}^p(\gamma)|^2 + W^p(\gamma) + \left(\frac{T}{b} \right) |\text{curl} \bar{\beta}^p(\gamma)| \right) \, dx \\
 + \mu \|u - \gamma x\|^2_{H^{1/2}(\partial \Omega)}
 \]

- Assumptions:
 * \(\Omega = [0, d]^3 \), \(d \equiv \) grain size.
 * Collinear double slip at \(90^\circ \).
 * Scalar displacement \(u_3 \).
 * Shear strain \(\gamma \) prescribed at infinity.
Optimal scaling laws

Theorem (Conti and Ortiz, ARMA ’05) *There are constants* c, c' *such that*

$$cE_0(T, \gamma, \tau_0, \mu, d) \leq \inf E \leq c'E_0(T, \gamma, \tau_0, \mu, d)$$

where

$$E_0(T, \gamma, \tau_0, \mu, d) \big/ G \gamma^2 d^3 =$$

$$\min \left\{ 1, \frac{\mu}{G}, \frac{\tau_0}{G \gamma} + \left(\frac{\mu}{G} \right)^{1/2} \left(\frac{T}{G \gamma bd} \right)^{1/2}, \frac{\tau_0}{G \gamma} + \left(\frac{T}{G \gamma bd} \right)^{2/3} \right\}$$

- Upper bounds determined by construction
- Lower bounds: Rigidity estimates, ansatz-free lower bound inequalities (Kohn and Müller ’92, ’94; Conti ’00)
Optimal scaling – Laminate construction

- Energy:
 $$W \equiv \frac{E'_{0}}{d^3} \sim \tau_0 \gamma + \left(\frac{\mu' T' \gamma}{b d} \right)^{1/2}$$

- Yield stress:
 $$\tau \equiv \frac{\partial W}{\partial \gamma} \sim \tau_0 + \frac{1}{2} \left(\frac{\mu T \gamma}{b d} \right)^{1/2}$$

- Lamellar width:
 $$l \sim \left(\frac{\mu T d}{\mu \gamma b} \right)^{1/2}$$
Optimal scaling – Branching construction

- Energy:
 \[W \sim \tau_0 \gamma + G \left(\frac{T \gamma^2}{Gb_d} \right)^{2/3} \]

- Yield stress:
 \[\tau \sim \tau_0 + \left(\frac{T}{bd} \right)^{2/3} (G \gamma)^{1/3} \]

- Microstructure size:
 \[l \sim \left(\frac{T d^2}{G \gamma b} \right)^{1/3} \]
Optimal scaling – Microstructures

Dislocation structures corresponding to the lamination and branching constructions

\[\tau \sim d^{-1/2} \]

\[\tau \sim d^{-2/3} \]

- Shocked Ta (Meyers et al '95)
- Laminate
- Branching
- LiF impact (Meir and Clifton '86)
Optimal scaling – Phase diagram

\[\left(\frac{T}{G \gamma bd} \right) \]

- Rigid
- Elastic

\[\gamma \uparrow, \gamma \uparrow, \gamma \uparrow \mu \downarrow, d \uparrow, d \uparrow, d \uparrow \mu \downarrow, \mu \downarrow \]

- Lamellar
- Branching

\[\left(\frac{\mu}{G} \right) \]

- $T = \text{dislocation energy}$
- $G = \text{shear modulus}$
- $\gamma = \text{deformation}$
- $b = \text{Burgers vector}$
- $d = \text{grain size}$
- $\mu = \text{GB strength}$
Non-locality and computation

- Effective behavior of each grain: $E(u|_{\partial \Omega}, \Omega)$, not a functional a gradient type.

- Need ’whole grain’ elements! (open at present).